• Members Only
    • Login

Canadian Association for the Club of Rome

Become active - It's your duty!

  • Home
  • About
    • About the Club
    • Meet our Directors and Members
    • CACOR Groups
  • Articles
    • Climate
    • CACOR Groups
    • Quotes
    • Trending
    • CACOR Writers
    • What are you doing
    • Solutions & Pathways
    • CACOR YouTube
  • Events & Resources
    • Luncheon Events
    • CACOR Forum
    • Presentations
    • Resources
    • Announcements
  • Contact Us
  • Membership

CACOR is a non-governmental organization
dedicated to intelligent debate and action on global issues.

2019-08-10

Monetizing microgrids

The following is a contributed article from Megan Kerins and Ana Sophia Mifsud, senior associates at Rocky Mountain Institute. 

Tree at spring against the sun and photovoltaic panelAs the energy industry transitions toward more distributed energy resources, electric utilities face a critical choice: embrace this opportunity or perceive it as a threat. This is especially true in the Caribbean where energy resilience is driving renewable microgrid adoption, fueled also by rapidly declining solar and battery storage costs.

During the 2017 hurricane season, extreme wind and rain damaged the region’s transmission and distribution systems, leaving thousands of homes, businesses and critical facilities in the dark for weeks and, in some cases, months. Two years later, the region is innovating toward a system less dependent on centralized fossil-fueled generation, opting instead for resilient energy sources such as microgrids to safeguard against prolonged outages.

Large-scale shocks to the energy system are not unique to the Caribbean; microgrids can bring benefits to the grid and to all customers. What this shift means for the future of utilities will largely depend on how they face this new reality.

Accelerating the Caribbean clean energy transition

Among the many key energy stakeholders we work with at Rocky Mountain Institute, utilities often struggle to embrace this transition, but they must do so to avoid being blind-sided by the shift toward renewable energy sources.

Microgrids by definition are energy generation systems that can disconnect from the grid and continue to power isolated facilities even when the larger electrical grid is unavailable. They can provide continuous, reliable energy to community service organizations, critical businesses, first responders, schools or other important facilities following a natural disaster.

For utilities serving hurricane-prone areas — such as the Caribbean, the eastern seaboard of the United States and the Pacific — microgrids offer an opportunity to continuously maintain energy services to critical customers during and after outages. However, utilities are currently not the main actors involved in microgrid deployment and are thereby missing an opportunity to benefit from this trend.

For example, in the Caribbean region, the 2017 hurricane season illustrated the need to improve electricity system resilience. In Puerto Rico, the widespread, prolonged power outage contributed to 2,975 deaths, due in part to a lack of electricity to power clinics and other critical facilities. This tragedy emphasizes that nearly every service that people depend on — from medical treatment to clean water — depends on electricity.

The opportunity exists to meet this challenge with renewable energy microgrids. Key trends are converging, including reductions in hardware costs — such as solar modules and batteries. The Caribbean renewable energy market is maturing, leading to a more robust supply chain and competitive pricing.

More benefits with utilities

Despite the lack of utility involvement, disaster-prone areas are already deploying microgrids as an energy resilience intervention. Since Hurricane Maria swept through Puerto Rico, at least 250 energy projects focused on critical facilities have been completed across 11 sectors. Based on data reported, total installed capacity is around 5.1 MW of solar photovoltaics and 7.9 MWh of battery storage, mostly lithium-ion based. These new assets depend less on fuel, are more reliable to operate, and will continue to operate when the grid is down.

With utility involvement, these systems can provide more benefits in the form of grid services to allow for better integration of distributed generation, save utilities on transmission and fuel costs, and provide revenue to the utility during grid outages. Bulk purchasing of microgrid equipment, which often leads to lower project costs, can be leveraged by utilities. Natural disasters will continue to occur in the Caribbean and elsewhere and by turning their focus toward microgrids, utilities can bring these benefits to their communities and service territories.

Continue reading the article at the source.

Article posted by Michael Krakowiak / Articles, CACOR Groups / Microgrid, transition Leave a Comment

Read more articles like this. Sign up for our latest updates.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

STAY INFORMED

Read more articles like this. Sign up for our latest updates.

Upcoming Events

  1. Presentation schedule update

    January 8 @ 08:00 - May 19 @ 17:00
  2. Can Canada find a pathway from Paris to 2030?

    February 26 @ 09:00 - August 2 @ 17:00

View All Events ...

Recent Articles

  • From the Lab to the Field, Agriculture Seeks to Adapt to a Warming World
  • Be on the right side
  • HOW I PICK THE CHARITIES TO WHICH I DONATE

Topics

Monthly Archives

Connect with us

Membership

Apply for membership.
 

Apply

Donate

CACOR is a registered charity.

Donate

Details

  • Privacy Policy
  • Disclaimer
  • FAQ
  • Sitemap

© 2021 · Canadian Association for the Club of Rome · Built by Creative Integration Web Design · Contact Us

Copyright © 2021 · CACOR Theme on Genesis Framework · WordPress · Log in