Some think that hydrogen is the solution, but there are easier ways that we can do right now.
By Lloyd Alter, published on January 04, 2021
There is so much talk about the hydrogen economy these days, and about making “green” hydrogen from renewable electricity, or “blue” hydrogen from natural gas while capturing and storing the CO2 that is released through the steam reformation process. Treehugger has been somewhat skeptical, noting that electric cars are much more efficient for transportation, and modern electric heat pumps are much more efficient for heating and cooling. But another use of hydrogen that has been popping up recently is as a solution to the problem of the intermittency of renewable energy.
Intermittency is what happens when the wind doesn’t blow and the sun doesn’t shine, and another dependable source of electricity is required to make up the difference between electricity demand and renewable supply. This can be expensive and carbon-intensive, kind of like having a car sitting in your driveway all year for the few times that it’s too rainy to ride your bike. Hydrogen has been offered up as a solution to this problem, as explained by Michael Liebreich of BloombergNEF:
“The extra value of zero-emissions hydrogen – be it green, blue, turquoise or whatever – over and above all the other flexible power options listed above, is that it can be stored in unlimited quantities. Hydrogen is therefore the only solution that can provide deep resilience to the highly electrified net-zero economy of the future. To do so, it will need to be pervasively available: stored in salt caverns, in pressure vessels, as a liquid in insulated tanks, or as ammonia. It will be moved around, cheaply via pipelines, or at a higher cost by ship, train, or truck. And it will need to be strategically positioned to cover the risk of supply shocks, whether they be the result of normal weather patterns, extreme weather events and natural disasters, conflict, terrorism or any other cause.”
Michael Liebreich is one of my go-to sources for smart discussions about hydrogen, so this drove me to spend my holiday thinking more about intermittency. Clearly, the hydrogen infrastructure that Liebreich is describing here would cost many billions of dollars and take many years, so we can afford to look at a number of options here. But first, let’s back up a bit.
Until the Industrial Revolution and the introduction of fossil fuels, intermittency was the way of life. Kris De Decker describes in Low Tech Magazine how people adapted to a world powered by wind and water.
“Because of their limited technological options for dealing with the variability of renewable energy sources, our ancestors mainly resorted to a strategy that we have largely forgotten about: they adapted their energy demand to the variable energy supply. In other words, they accepted that renewable energy was not always available and acted accordingly. For example, windmills and sailboats were simply not operated when there was no wind.”
So they would build dams to store water in mill ponds, “a form of energy storage that’s similar to today’s hydropower reservoirs.” They learned the patterns of the trade winds so that they could cross the Atlantic pretty dependably. They adapted business practices accordingly and would work when the wind blew, even on a day of rest. A miller responded after a complaint about working on Sunday: “If the Lord is good enough to send me wind on a Sunday, I’m going to use it.” De Decker notes that there could be modern equivalents to this:
“As a strategy to deal with variable energy sources, adjusting energy demand to renewable energy supply is just as valuable a solution today as it was in pre-industrial times. However, this does not mean that we need to go back to pre-industrial means. We have better technology available, which makes it much easier to synchronize the economic demands with the vagaries of the weather.”
Leave a Reply