Original article by Philip James, University of Salford
As the days shorten and temperatures drop in the northern hemisphere, leaves begin to turn. We can enjoy glorious autumnal colours while the leaves are still on the trees and, later, kicking through a red, brown and gold carpet when out walking.
When temperatures rise again in spring, the growing season for trees resumes. Throughout the warmer months, trees take carbon dioxide from the atmosphere and store it in complex molecules, releasing oxygen as a byproduct. This, in a nutshell, is the process of photosynthesis. The more photosynthesis, the more carbon is locked away.
We know that carbon dioxide is a major driver of climate change, so the more that can be taken out of the atmosphere by plants, the better. With the warmer climate leading to a longer growing season, some researchers have suggested that more carbon dioxide would be absorbed by trees and other plants than in previous times. But a new study has turned this theory on its head and could have profound effects on how we adapt to climate change.
This research shows that deciduous trees can only absorb a set amount of carbon each year and once that limit is reached, no more can be absorbed. At that point, leaves begin to change colour. This limit is set by the availability of nutrients, particularly nitrogen, and the physical structure of the plant itself, particularly the inner vessels which move water and dissolved nutrients around. Nitrogen is a key nutrient which plants need in order to grow, and it’s often the amount of available nitrogen that limits total growth. This is why farmers and gardeners use nitrogen fertilisers, to overcome this limitation.
Leave a Reply