The need for reliable renewable energy is growing fast, as countries around the world—including Switzerland—step up their efforts to fight climate change, find alternatives to fossil fuels and reach the energy-transition targets set by their governments. But renewable energy can’t be incorporated into power grids efficiently until there is a way to store it on a large scale.
“Most forms of renewable energy are dependent on weather conditions, which results in large fluctuations in the power they supply,” says Danick Reynard, a Ph.D. student at EPFL’s Laboratory of Physical and Analytical Electrochemistry (LEPA). “But power grids aren’t designed to manage these kinds of fluctuations.” Hydrogen, because it can supply energy consistently regardless of the weather, is now attracting growing attention.
LEPA scientists have been working for several years on the dual challenges of clean hydrogen production and energy storage. They have just unveiled a new system that combines a conventional redox flow battery—currently one of the most promising methods for large-scale stationary energy storage—with catalytic reactors that produce clean hydrogen from the fluid running through the battery. The LEPA system is just as efficient as conventional ones but offers greater flexibility and energy storage capacity. It also produces clean hydrogen at a lower cost. The scientists’ research appears in Cell Reports Physical Science.
Leave a Reply