The emergence of electric vehicles (EVs) as key elements in the decarbonization of transportation demands a new class of intelligent infrastructure capable of optimizing charging behavior while maintaining power system stability. This paper proposes a novel Scalable Cloud-Based Continuous Monitoring Platform (SC-CMP) designed to support real-time optimization of microgrid operations, particularly in EV-dense and renewable-integrated environments. By fusing cloud computing, machine learning (ML), and artificial intelligence (AI) with Internet of Things (IoT) data acquisition, SC-CMP enables continuous monitoring, predictive scheduling, and adaptive energy management across distributed power networks. Unlike conventional systems, SC-CMP supports both centralized and decentralized microgrid architectures, providing scalable support for dynamic load balancing, V2G coordination, and resilient energy dispatch.
Simulation and validation are performed using a real-world dataset of 3395 EV charging sessions across 105 stations, demonstrating SC-CMP’s superiority over existing AI/ML baselines. Quantitatively, the platform achieves 97.34% predictive accuracy, 96.81% grid stability improvement, 94.5% resource allocation efficiency, 93% scalability, and 95.2% data privacy assurance. These outcomes position SC-CMP as a comprehensive, adaptive, and cost-effective solution for microgrid-oriented EV integration, offering substantial advances in resilient power distribution, renewable energy utilization, and sustainable electric mobility. The platform serves as a foundation for next-generation microgrid control systems that demand real-time intelligence, scalability, and reliability across evolving smart grid landscapes.