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World Water Crisis
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Source: Grafton and Fanaian (2023, Figure 1)
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Trends in Total Water Storage Anomalies (2002-2022)

TWSA (mm yr")
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A 1,058 Natural Lakes & 922 Reservoirs (1992-2020) Water Storages

Lake water storage trend
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Regional Unsafe Water Related
Disabilities (DALYS5s)

Sub-Saharan Africa 50M

South Asia 28M

East Asia & Pacific

Latin America & Caribbean l 2M

Middle East & North Africa I M
Europe & Central Asia I 763K
North America ‘ 65K

Data Source: Global Burden of Disease Study (2019)
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I1. Water Limits and
Climate Change
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2023 will be hotter than 2022..

Relative to 1951-1980 Averages www.BerkeleyEarth.org
N = | Temperature
-6 -4 -2 -1 -0.5 0 0.5 1 2 4 6 Anomaly (° C)

“...stabilization at today’s greenhouse gas levels (at 405 ppmv at time of writing) may already commit Earth to an eventual
total warming of 5 degrees Celsius (range 3 to 7 degrees Celsius, 95 per cent interval) over the next few millennia as
ice sheets, vegetation and atmospheric dust continue to respond to global warming,” Snyder (2016)



And it’s getting hotter

Land and Ocean Temperatures 1850-2022

Temperature Anomaly (° C)

Temperature anomalies relative to 1850-1900 average and 95% confidence intervals
Land data from Berkeley Earth, ocean data adapted from HadSST after interpolation
Temperature anomalies for sea ice regions are calculated separately and not shown
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Source: https://www.carbonbrief.org/state-of-the-climate-how-the-world-warmed-in-2022/



TONNES C0, EISSIONS PER PERSON PER YEAR

Carbon Emissions & Per Capita Income
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Water stress indicator (WSI) in major basins:
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Climate Change
changes everything

but...

Water insecurity is NOW
Flooding is NOW
Drought 1s NOW

Unsustainable water use is NOW (and for
past forty years...)

Sea level rise is new and will, among other
consequences, impose huge damages on
wetlands and their ecosystem services

Increased glacial melt 1s new (and now)

Source: Gleeson et al. (2012)



Water Flows and Consumption

Precipitation
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Global Costs of Inaction: 2030 & 2050

Drought

Climate
change

Food
insecurity

2030

700 million people at risk of displacement

15 miillion people and USD 17 billion
infrastructure at risk of coastal flooding and
USD 535 billion of urban infrastructure
impacted by river flooding

100 million people into poverty by 2030.

Estimate of 660 million people suffering
from hunger

USD 260 billion annually from poor WASH

2050

Between 4.8 to 5.7 billion affected people

Between 31-450 million people under
different climate models

Regionally 8% GDP losses by income and
property losses, lower agricultural
production and health issues

Global food supply to decline from 9.75
million to 9.2 million Gcal

240 million people with no access to clean
water and 1.4 billion people lack access to
basic sanitation

Fossil fuel subsidies expected to increase to

7.4% by 2050

FUTURE COSTS OF INACTION

Source: Grafton et 1a7l. (2023a)



I1I. The ‘Guess
Who’ of Water




Water withdrawals per capita versus GDP per capita
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Per capita water withdrawals are measured in cubic meters and GDP is measured in Billion USD

Source: Dalstein and Naqvi (2022)



Delivering Justice and Earth Pressures

Pressure on the Earth system
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Source: Rammelt et al. (2023)



Towards Water Justice: Goals, Decision-Making and Outcomes

TOWARDS WATER JUSTICE
GOALS

Intergenerational Intragenerational
DECISION-MAKING

Procedural & Epistemic Justice

Adopting a pluralistic

understanding of axiology,
ontology, epistemology,
methodology & methods

OUTCOMES

Meaningfullyincluding
all relevant communities
in decision-making

Bridging (‘braiding’ or
‘weaving’) knowledges

Distributive & Restorative Justice

Acknowledging and
correcting for past and
on-going injustices

Supporting the rights of
‘Living Waters’

Implementing a basic
right to water for all

Source: Grafton and Fanaian (2023, Figure 3)



Forms of Water Justice (& social, climate, etc.)

(1) DECISION-MAKING (WHO gets heard and who makes and influences decisions)
Deliberative and/or Procedural and/or Recognition justice

(2) FAIRNESS & EQUALITY (WHAT gets shared):
Distributive and/or Retributive justice

(3) UNDERSTANDING (WHICH knowledge & experiences are accepted, or not)
Epistemic justice

(4) RECONCILIATION (WHEN do past & current wrongs get corrected)
Restorative Justice

Source: Grafton (2023, this presentation)



IV. Connecting
Water to Food,
Energy,

Environment...




Connecting the dots: The Nexus

€ Processing, distribution, treatment

ENERGY
WANER \ ECOSYSTEMS ’

Source: GWP (2019)



FAO Global Food Price Index: 1960-2023

FAO Food Price Index in nominal and real terms
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* The real price index is the nominal price index detlated by the World Bank Manufactures Unit Value Index (MUVY)

Source: https://www.fao.org/worldfoodsituation/foodpricesindex/en/



Water-Energy-Food-Ecosystem Nexus
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Water Stress and Net Food Trade (2018 and 2019)

WATER STRESS
W critical NETIMPORTS ~ <——|—>  NETEXPORTS No data

' T T — =
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NOTE: This figure depicts only high and critical water stress levels based on 2018 data. The level of water stress is determined by the share of freshwater
withdrawals from available freshwater resources and is reported by FAO under Sustainable Development Goal indicator 6.4.2. Net trade refers to the trade
of primary crops. This figure shows net trade positions (exports minus imports) normalized by total trade (exports plus imports) based on 2019 data.

SOURCE: FAO. Conforms to Map No. 4170 Rev. 19 United Nations (October 2020).
Source: Jafari et al. (2022)
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Reduction of Reglonal Food Supply (RCPS 5- SSP3) (% thous GCal): 2050
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Note: % thous giga-calorie fall in food output (compared to baseline) due to water and heat stress on agricultural production in 2050.
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Source: Kompas et al. (2023, Figure 7)



Regional Food Insecurity (RCP8.5-SSP3) (%opop): 2050
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Responc

Hazard Reduction

Maintain native forests.

Create and restore
wetlands to reduce
flood risk.

Support clean energy
investment to reduce
the risks of future
energy price spikes
and volatility.

ing to Nexus Risks

Vulnerabilities

Water-food-
energy nexus
risks

Exposure

Vulnerabilities Reduction

Establish and implement water use priorities that
prioritise vulnerable communities.

Reduce deforestation, soil erosion, and siltation that
interfere with hydropower generation.

Overcome financial constraints for investments in
green infrastructure.

Exposure Reduction

Improve planning regulations to mitigate or to remove
barriers to renewable energy developments (reducing
people/ infrastructure adversely affected by fossil fuel
crisis).

Prioritise sustainable water consumption (reducing
people/ infrastructure adversely affected by drought).

Implement water sensitive spatial land use planning
and development (reducing people/infrastructure
adversely affected by drought/flood).

Source: Grafton et al. (2023, Figure 2.4)



Guiding Questions

Four guiding questions help identify
vulne rabilities and capacities to
influence resilience strategies.

+ Of What? + For Whom?
+To What? + Through What?

A Resilience Framing

» -
.;:} w“

Three Capacities

Resilience requires short-term
absorptive and medium-term
adaptive capacities, supported

by the long-term capacity to
transform the underlying cultural,
institutional and lkearning dynamics
within the system. Strengthaen

all three to equip households,
communities and systems to
manage shocks and stresses.

Analyze systems using
the STRESS process

ANALYZE STRATEGIEZE

STRESS Process

Strate gic Resilience Assessments
lead to a Theory of Change by
taking a systems approach to
collacting and analyzing data
across scales and sectors.

@ Test Theory of Change
across program porifolios

©)

=] =
(=

Theory of Change

The Theory of Change articulates
a measurable path to a desired
impact, which is then tested
threugh pregram porifolios and
interventions.

Manage for
program impact

LEA BN THROUGH #CTION

BASHITOR
..musr—l

Adaptive Management
Resilience programs are guided

by adaptive management practices.

This that nt

Generate evidence
=] and share knowledge

#— EWLUATE & TERNTE

Evidence-Based Learning

Pregressively build an evidence
base by testing what works on the
ground. This is key to unlocking

is in place to inform adj nts,
make strategic changes or rethink
the Theory of Change. Continually
menitor, adjust and iterate to
create deaper and wider impact.

Source: MercymCorps (2023, p. 2)

ial learming - the sharing of
both scientific and local knowledge
batween individuals, communities
and institutions.



Transitional & Transformational Pathways

Transformational Pathway Transition Pathway

Multiple values of water become inherent Learning about different water values

Experimenting with diverse valuation processes

Explore revised regulatory oversight

Participatory discussion for decision-making

Expand investments for mixed infrastructure (grey + green)

Explore opportunities for integrating green, grey and soft infrastructure

Diverse Valuation processes

Inclusive and less opaque decision-making
Water infrastructure design centred on just and equitable distribution

Improved regulatory systems (soft infrastructure) to conserve and
enhance green and grey infrastructure,

g Mixing green, soft and grey infrastructure delivers resilient community
and ecosystem.,

waswN =
OV aE WN =

Business-as-usual Pathway

1  Market/economic value dominance
2 Only cost-benefit market valuation used

3 Decision processes-top-down favouring
centralized grey infrastructure (dams, massive,
piped supply systems)

4 Thin-market justice & opaque decision-making
processes.

5 New infrastructure to address ageing grey
infrastructure and cascade risk.

6 More grey infrastructure and lock-in

7 Increase in water risk, investment costs and
water consumption

Source: Grafton et al. (2023, Figure 3.8)
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Irrigation Efficiency, Return Flows & End-of-System Flows
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Irrigation Efficiency: 70%

Irrigation Efficiency: 85%

Total (A2 + B2) Extractions = 80+ 30 = 110
Water Consumed (A2 + B2) = 68 + 25.5 = 93.5
Return Flows (A2 +B2) =12+ 4.5 = 16.5

End of System Flows = 6.5

Total (Al + B1) Extractions =80+ 42 = 122
Water Consumed (Al+ Bl) = 56 + 29.4 =854
Return Flows (A1 + B1) = 24 + 12.6 = 36.6
End of System Flows = 14.6

Source: Perry et al. (2023)



Water Pricing Challenges

Price of water in centralised distribution networks is often too low to cover both operation
and maintenance, and future capital investment and maintenance costs

Price of water is, typically, not equitable across users: households usually pay higher prices
than farmers and industry; price of non-piped water commonly higher than price of piped
water in low-income countries

Because water is under-priced, cost recovery and economic efficiency objectives are not
achieved (the price fails to send a sufficient signal on water scarcity to users)

Increasing Block Tariffs often fail in targeting subsidised water prices to poor households
and distort price signal

Complexity of water pricing/tariffs combined with its low level may explain that water
demand is usually found to be price inelastic (% decline in consumption is less than %
increase in price)

Source: Wheeler et al. (2023)



Water Values and the Five Capitals
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Promoting Resilience (Resistance, Recovery Time and Robustness)
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Water Withdrawals in billion cubic meters per year
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