Welcome to this week's presentation and conversation hosted by the **Canadian Association for the Club of Rome**, a Club dedicated to intelligent debate and action on global issues.

Electrification 2.0: Current Status and Future Trends

Our speaker today is Dr. Sheldon Williamson, (Fellow, IEEE) received the Ph.D. degree in electrical engineering from the Illinois Institute of Technology, Chicago. He is currently a Professor with the Smart Transportation Electrification and Energy Research Group, Department of Electrical, Computer, and Software Engineering, University of Ontario Institute of Technology Oshawa, ON. He holds the NSERC Canada Research Chair position in Electric Energy Storage Systems for Transportation Electrification. His current research interests include advanced power electronics, electric energy storage systems, and motor drives for transportation electrification. This presentation will highlight the current status and future opportunities in transportation electrification and other modes of autonomous e-mobility.

The presentation will be followed by a conversation, questions, and observations from the participants.

CACOR acknowledges that we all benefit from sharing the traditional territories of local Indigenous peoples (First Nations, Métis, and Inuit in Canada) and their descendants.

Website: canadiancor.com Twitter: @cacor1968 YouTube: Canadian Association for the Club of Rome

2023 Feb 01 Zoom #132

Electrification 2.0: Current Status and Future Trends

Sheldon S. Williamson, Fellow, IEEE

NSERC Canada Research Chair Electric Energy Storage Systems for Transportation Electrification

Smart Transportation Electrification and Energy Research (STEER) Group Advanced Storage Systems and Electric Transportation (ASSET) Laboratory Department of Electrical, Computer, and Software Engineering Faculty of Engineering and Applied Science Ontario Tech University 2000 Simcoe St. N., Oshawa, Ontario L1G 0C5, Canada EML: <u>sheldon.williamson@ontariotechu.ca</u> URL: <u>https://engineering.ontariotechu.ca/steer/index.php</u>

Chaires de recherche du Canada

Canada che Research a Chairs

Smart Transportation Electrification and Energy Research (STEER) Group

Tarlochan Sidhu

Vijay Sood

Walid Ibrahim

Mohamed Youssef

Sheldon Williamson

- **150+** graduate research students.
- Over 5000 m² of research lab space.
- 12 full-time lab technicians.

Current Research Thrust Areas

Why Electric Transportation?

Greenhouse gas emissions by Canadian economic sector in 2021

[1] Canadian environmental sustainability indicators: Greenhouse gas missions [Online]. Available: <u>https://www.ec.gc.ca/indicateurs-</u> <u>indicators/F60DB708-6243-4A71-896B-</u> 6C7FB5CC7D01/GHGEmissions EN.pdf

Why Electric Transportation?

Canada's Energy Use by Sector

Why Electric Transportation?

Key Challenges

- 1. Limited range: 100-500 km
- 2. Long charging time: 4-8 hours
- 3. Limited charging infrastructure
- 4. Limited battery cycle life: 500-1000 cycles
- 5. Safety issues
- 6. High initial cost

Research Focus Areas within the STEER Group

- 1. EV charging technologies
- 2. Battery energy management
- 3. Electric drives for EVs

EV Charging Methods

Ultrafast Charging

Туре	Chemistry	C-rate	Time	Temperature	Charge termination
Slow charger	Ni-Cd, PbA	0.1C	14h	0°C to 45°C (32°F to 113°F)	Continuous low charge or fixed timer. Subject to overcharge. Remove battery when charged.
Rapid charger	Ni-Cd, Ni- MH, Li-ion	0.3-0.5C	3-6h	10°C to 45°C (50°F to 113°F)	Senses battery by voltage, current, temperature and time- out timer.
Fast charger	NiCd, NiMH, Li-ion	1.0 C	1h+	10°C to 45°C (50°F to 113°F)	Same as a rapid charger with faster service.
Ultra-fast charger	Li-ion, Ni-Cd, Ni-MH	1-10 C	10-60 minutes	10°C to 45°C (50°F to 113°F)	Applies ultra-fast charge to 70% SOC; limited to specialty batteries.

DC Fast Charging Systems

SAE J1772 AC and DC Charging Standards

Charge Method	Nominal Supply Volt	age (V)	Maximum Current (A)	Branch Circuit Breaker Rating (A)	Output Power Level (kW)	
AC Level 1	120 V AC, 1-pha	120 V AC, 1-phase		15 A	1.08	
	120 V AC, 1-pha	se	16 A	20 A	1.44	
AC Level 2	208 to 240 V AC, 1-	208 to 240 V AC, 1-phase		20 A	3.3	
	208 to 240 V AC, 1-	phase	32 A	40 A	6.6	
	208 to 240 V AC, 1-	phase	$\leq 80 \text{ A}$	Per NEC	≤14.4	
				635		
Charge	Supplied DC	Ma	ximum	Power	Level (kV	V)
Method	Voltage Range (V)	Cur	rent (A)			
DC Level 1	200-450 V DC	≤ 8	0A DC	≤ 3	86 kW	
DC Level 2	200-450 V DC	≤ 20	00A DC	≤ 9	90 kW	
DC Level 3	$200-600 \text{ V DC} \leq 40$		00ADC	≤ 2	40 kW	
	ту					,

Design of a 25 kW DC Fast Charger

Janamejaya Channegowda PhD (2020)

Universal 6.6 kW On-board Battery Charger

Universal 6.6 kW On-board Battery Charger

AC Charging Station On-Board Battery Charger (OBC)

EV battery module Jaya Sai Praneeth Ammanamanchi Venkata, Lalit Patnaik, Najath Abdul Azeez, Sheldon S. Williamson, "Wide-output voltage range onboard battery charger for electric vehicles," U. S. Patent No. 11518262, Dec. 06, 2022.

Ongoing Work on AC Onboard Chargers and DC Offboard Fast Chargers

Solar/EV/Grid Integrated Charger/Inverter (Including V2G/V2H/V2X)

Solar/EV/Grid Integrated Charger/Inverter (Including V2G/V2H/V2X)

© 2021 Eaton. All rights reserved

Single-Stage PV-Grid Inter-connected Z-source Inverter for DC Fast Charging (5.0 kW Prototype)

Single-Stage PV-Grid Inter-connected Z-source Inverter for DC Fast Charging (5.0 kW Prototype)

Single-Stage PV-Grid Inter-connected Z-source Inverter for DC Fast Charging (5.0 kW Prototype)

NHR 9200 series 12kW Bidirectional EV Battery Emulator System

Active Snow Removal from PV Panels + EV Charging

Sandra Aragon Aviles Master's (2022)

Active Snow Removal from PV Panels + EV Charging

Sandra Aragon Aviles Master's (2022)

Wireless Charging

Static Wireless Charging + SAE J2954 Standards

SAE J2954 WE	PT Classification	WPT1	WPT2	WPT3	WPT4	
Charging Standa	Frequency band	81.39 kHz – 90 kHz (typical 85 kHz)				
	Power Levels	3.7 kW	7.7 kW	11 kW	22 kW	
i Ontar	IOTEC Status	Specified	Specified	In process	In process	
UNIVERS	ITY				25	

Dynamic (In-motion) Wireless Charging

Dynamic (In-motion) Wireless Charging (E-autonomy)

Inductive Power Transfer (IPT) Fundamentals²⁸

• Advances in power electronics have positively impacted inductive power transfer (IPT) technology.

Inductive Power Transfer (IPT) Fundamentals

29

• IPT technology is an effective alternative for charging EVs.

• IPT technology has been proven for low-power applications.

Inductive Power Transfer (IPT) Fundamentals ³⁰

• IPT has been researched for higher-power applications as well.

Static Wireless Charging Standards for EVs

Society of Automotive Engineers (SAE J2954) Standard

Classification	WPT1	WPT2	WPT3	WPT4
Frequency band	81.39 kHz – 90 kHz (typical 85 kHz)			
Power Levels	3.7 kW	7.7 kW	11 kW	22 kW
Status	Specified	Specified	In process	In process

[3] SAEJ2954 technical information report (TIR) 2016 [Online]. Available: <u>http://standards.sae.org/wip/j2954/</u>

Design of Archimedean Coil Wireless Charger

Coils for 3.6 kW wireless charger

FEA analysis			

Parameters	Values
Nominal Output Power	3.6 kW
Operating Frequency	40 kHz
Nominal Air Gap	16 cm
Input Voltage	240 V ac

Parameters of designed coils

Dr. Kunwar Aditya PhD (2016)

Design of Ferrite-core-based Wireless Charger

Vamsi K Pathipati MASc (2016)

Matrix AC-AC Converters for Wireless Charging

Single-Stage Power Conversion

Phuoc Sang Huynh PhD Student

Contactless Capacitive Power Transfer

Application of the CPT charging system

FAE analysis for CPT charging

Hybrid Wireless Charging with Controllable Power Sharing

Li-based Battery Energy Storage Systems: Current Status and Issues (big picture)

Active Cell-balancing Under Aggressive Discharge Conditions

David Capano MASc Student

- **5** OntarioTech :
 - Discharge rate > 10C
 - Racing applications

Cell Balancing/SOC Estimation

When every single battery cell lower than 4.2V

Equalizer Prototype

- ➢ Microcontroller
- ≻MOSFETs
- ≻Inductors
- ≻To 5 battery cells in series
- ➢Communication Bus

Smart Battery Management Systems

- 1. Reducing battery size by 50-60%;
- 2. Extending calendar life by ~200%;
- 3. Within 5% of the battery pack cost.

EV Battery 2nd Life and Beyond

Battery Digital Twin + Wireless Cloud-based BMS

Health-conscious Fast Charging Algorithms

44

Energy Management for E-racing

LiFePO₄ battery energy management under aggressive usage (SAE Formula Electric[®] Race Car Series)

Ultracapacitors (UC) for Electric Mass Transit

Bank Switching of Ultracapacitors for Hybrid Energy Storage Systems

Modular Multilevel Converters for High-power Traction

Modular Multilevel Converters for High-power Traction

Rishi Menon PhD (2020)

Electric Traction Machine Emulator

Arvind Kadam PhD (2022)

Other Ongoing Projects

UCs for E-buses (Fast Charging + On-board Power Management)

- UC bank life estimation for mass e-transit;
- UC power management electronics;
- UC fast charging converters (≥ 250 kW).

PV/EV/Grid Interface

Modular 10.0 kW single-stage, 1-phase Inverter/Charger systems for Level 1 or Level 2 DC charging system.

E-drones (Range Extension)

Automotive Center of Excellence (ACE)

Automotive Center of Excellence (ACE)

Microgrid and Innovation Research Park

57

Microgrid and Innovation Research Park

Research Focus Areas at STEER Group

ONTARIOTECH

RIDGEBACKS 5 OntarioTech UNIVERSITY 50