District Energy Systems

Canada's Missing (Low Carbon) Infrastructure

- Central energy plant producing heat and/or cooling and sometimes electricity
- Fuelled by biomass/wood, natural gas, municipal waste, waste heat (pumps)
- Other resources such as deep water cooling
- Connect buildings using hot water pipes
- Energy transferred to buildings using heat exchangers; space heat & hot water
- Buildings do not have separate furnaces/boilers
- Municipal-owned, P3, private, co-operative ownership models
- Examples: Charlottetown, Toronto (Enwave), Ottawa (PSPC), London, Markham, Surrey, universities, DND bases, hospitals (~180 DES in Canada)

In-Building Energy Distribution

- **Options**
 - **Radiators**
 - In-floor
 - Hydronic air handler & ducting
 - Fan coil

Why District Energy?

- 1. Fuel flexible, FUTURE-PROOF infrastructure for cities & towns
- 2. The **PROVEN** approach for urban decarbonization
- 3. Enable the use of low cost, unprocessed LOW CARBON FUELS
- 4. Address URBAN-RURAL divide on decarbonization and job creation
- 5. Development requires same **SKILLS AND TRADES** as oil and gas
- 6. Enables Climate-Smart Forestry, including climate ADAPTATION
- 7. Centralization of energy generation permits **NEGATIVE EMISSIONS** via BECCS
- 8. Source of **INCOME** for municipalities, increasing robustness and resiliency

Building Space and Hot Water Demand

Northern Country Population Served by DE

Energy Demand in Canada

- Thermal energy is approximately 60-65% of Canada's energy demand
- Excluding existing electrical heating, electricity is 12% of Canada's energy demand
- Heating residential buildings requires more energy than ALL of Canada's electricity demand

Renewable Energy in the EU

- Hydropower
- Onshore Wind
- Offshore Wind
- Solar PV
- Concentrated Solar
- Solid Biomass
- Biogas & Liquids
- Geothermal & Other
- Solid Biomass
- Biogas & Liquids
- Heat Pumps
- Geothermal
- Solar Thermal
- Biodiesels
- Biogasolines
- Other Biofuels
- Electricity Road

Total: 8.5 EJ

Bioenergy in the EU

- Hydropower
- Onshore Wind
- Offshore Wind
- Solar PV
- Concentrated Solar
- Solid Biomass
- Biogas & Liquids
- Geothermal & Other
- Solid Biomass
- Biogas & Liquids
- Heat Pumps
- Geothermal
- Solar Thermal
- Biodiesels
- Biogasolines
- Other Biofuels
- Electricity Road

Bioenergy in 2017: 211 Mt CO₂e reductions

Energy Consumption in Canada

Total 11.4 EJ

What is 'Bioheat'?

Energy Consumption in Sweden

Bioenergy Demand in Sweden

Forests in Sweden

Standing Timber

Growth & Removals

* Increase in standing volume

20

- NET carbon uptake (increase in standing volume) reduces Sweden's national GHG emissions by 80%
- Per Capita GHG Emissions:
 - \triangleright Sweden = 0.9 t CO₂e/pp
 - \triangleright Canada = 19.7 t CO₂e/pp

Mass Timber

Austrian Forest Sector – C\$9 B/yr

Highly profitable mass timber industry supported by heat market Forested area: <4 M ha; highly mountainous; stocks increased 45% since 1960

All figures in M m³
Total NS Harvest ~3 M m³

Wood Pulp Production in Canada

Timber Harvest in Ontario

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Nova Scotia Carbon & Fuel Pricing

\$170/t CO₂e adds \$8.70/GJ to natural gas; \$0.45/L to heating oil

- * Assumes 100% of emissions subject to carbon pricing; rates increases as projected by NSP Integrated Resource Plan
- * Grid CI of 650 g CO₂e/kWh in 2021 decreasing to 500 g CO₂e/kWh by 2030
- Heating oil cost includes Clean Fuel Standard compliance
- Cost assumes 2% annual inflation

Trollhättan, Sweden (21 MW_{th})

Blackburn Meadows, UK (55 MW_{th})

Uppsala, Sweden (110 MW_{th})

Lienz, Austria (17 MW_{th})

Schwendi, Germany (7 MW_{th})

Bioheat in Canada

- 460 Commercial/Institutional Bioheat Projects in Canada (75-5,000 kW scale)
- Industry growing at 15% per year
- >99% wood chips or wood pellets
- Wood (cordwood, pellets) provides 11% of residential energy supply
- Wood provides 10% of industrial energy supply
- Carbon intensity energy used by pulp and paper sector decreased 60% (1990-2015) by fuel switching

Prince County Hospital, Summerside, PEI

Customer Perspective

- Customers sign heat utility supply agreement
- Heat transfer unit (HTU) installed in each building owned by utility
- Customer controls temperature/consumption using existing thermostat(s)
- Existing heat systems can be retained for backup (but not necessary)
- Track heat consumption online
- Monthly billing
 - Connection fee, consumption, billing fee
- Billing & customer information services could be contracted to third party
 - E.g., NorthStar Utilities Solutions

Fine Particulate Matter (PM_{2.5}) Emissions

Waste Fate, 2017

Share of Plastic Inadequately Disposed

Source: Jambeck et al. (2015)

Stockholm, Sweden – Net Zero before 2030

Stockholm Exergi District Energy System (P3 with Fortum)

- 7,350 GWh/yr; 4,000 MW* (580 MW_e) peak capacity
- 350 km of transmission pipes; 2,800 km of distribution pipes
- >95% of buildings in Stockholm
- 90% renewable/low carbon; Net Zero by 2030
- Wood chip combined heat & power, waste-to-energy
- Currently planning 620 MW_{th} waste/biomass plant
- Planning full scale Bioenergy Carbon Capture and Storage (BECCS) for negative emissions

	Canada	Sweden
GDP Per Capita (USD)	48,100	51,300
GHG Emissions Per Capita (t CO ₂ e)	19.4	5.4
GHGs Per Capita (t CO ₂ e), incl. LULCF	18.6	0.9

^{*}Current Toronto (Enwave) DES peak ~380 MW; 761 GWh/yr

Stockholm Värtaverket KVV8 Biomass CHP Plant

- 400 MW_{th}
- Heats 190,000 homes via DE
- 100% wood chips (3,500 t/day)
- Commissioned in 2016
- CapEx: C\$750 M
- 1,700 GWh heat (>2x Enwave)
- 750 GWh electricity
- 60% marine/40% rail
- Reduce: 650,000 t CO₂e/yr
- Footprint: 6,000 m²
- PM emissions < natural gas

BECCS at Värtaverket KVV8

Negative emissions double offset Stockholm transportation emissions

Copenhagen, Denmark - Net Zero by 2025

Copenhagen HOFOR District Energy System (City-owned)

- 8,350 GWh; 4,000 MW peak capacity
- 180 km of transmission pipes to 21 distribution systems (1,500 km)
- 99% of buildings in Copenhagen; >800 M sq ft
- 4 large biomass CHP; 4 large WtE; 2 sludge incinerators; gas peakers
- 74,000 m³ buffer storage
- Denmark has ~400 DES most municipality-owned or co-operatives

	Canada	Denmark
GDP Per Capita (USD)	45,000	56,300
GHG Emissions Per Capita (t CO ₂ e)	19.6	8.3
GHGs Per Capita (t CO ₂ e), incl. LULUCF	19.1	8.8

Bioenergy consumption in Denmark 2.5x greater than wind

Copenhagen Amager Bakke WtE Plant

- 247 MW_{th}
- Flex output: 0-63 MW_e/157-247 MW_{th}
- 15-18% of city's heat demand
- 560,000 t MSW/yr (>TO landfill)
- Commissioned in 2018
- CapEx: C\$840 M
- Downtown Artificial ski slope
- World's highest climbing wall
- >90% efficient
- 1,000,000 MWh heat
- 400,000 MWh electricity

Amager Bakke Balance

Amager Bakke Emissions

Air Emission, daily average mg/m³, ref.*	EU Industrial Emissions Directive (IED), (3)	Environmental permit, (4)	Expected operational emissions	EPA/EEA Natural Gas Furnace
СО	50	39	10	50-60
Total organic carbon	10	8	1	
Dust	10	5	3] 4-9
HCI	10	5	0.5	
HF	1	1	0.05	
SO ₂ and SO ₃ (as SO ₂)	50	30	2	
NO _x (as NO ₂)	200	100	15] 100-140
NH ₃	-	3	0.5	
N ₂ O	-	-	0.5	
Cd + Tl	0.05	0.025	0.001	
Σ 9 metals ¹⁾	0.5	0.25	0.015	
Hg	0.05	0.025	0.001	
PAH	-	0.0025	0.002	
Dioxins and furans, TEQ (ng/m³, ref.*) * ref. is reference	0.1 e condition,	0.1	0.02	

Copenhagen Amagerværket Biomass CHP Plant

- $500 \text{ MW}_{\text{th}} (280_{\text{th}}/120_{\text{e}})$
- Heats 210,000 homes
- 100% wood chips (4400 t/day)
- Commissioned 2020
- CapEx: C\$1 B
- 2700 GWh heat (>3.5x Enwave)
- 1000 GWh electricity
- 100% marine
- Reduce: 1,200,000 t CO₂e/yr
- 25% of city heat demand
- PM emissions < natural gas
- Requires DES for operation

Copenhagen

Underground Construction

Architect

Civil Engineer

Iron Worker

Concrete Finisher

Survey Engineer

Operating Engineer

Stationary Engineer

Oil & Gas Vs. DE & Biomass Professions BIORESOURCES				
Profession	Oil & Gas	District Energy & Biomass		
Pipelayer	√	✓		
Pipefitter & Steam Fitter	\checkmark	\checkmark		
Boilermaker	\checkmark	✓		
Welder	\checkmark	\checkmark		
Electrician	\checkmark	\checkmark		
Instrumentation Technician	\checkmark	\checkmark		
Heavy Equipment Operator	\checkmark	\checkmark		

Bioenergy for Adaptation

Bioenergy for Adaptation

Bioenergy for Adaptation

Growing Carbon Stocks

- Trees need light and space
- Active forest management INCREASES productivity & carbon uptake
- Sweden has 9% of Canada's forests, but 60% more NET carbon uptake
- Forestry reduces net GHG emissions by 80% in Sweden and 40% in Finland
- Finland & Sweden harvest 8-10x the volume per forested acre as Canada
- Removal of diseased/poor quality trees to improve forest vigour & resilience
- Single tree selection, uniform shelterwood
- Strip cut & clear cut where needed –dominant species stunting productivity
- Complete avoidance of high-grading

EFFECT OF THINNING ON TREE GROWTH Thinning 24 years 12 years 24 years C B A 2014 1954 2002 1978 A. Period of rapid growth **Average Growth of Diameter** - Water and light available in large quantity Period B: 0.16 cm/year Period C: 0.50 cm/year B. Period of Declining Growth or Stagnation Period Percentage of increase in growth after thinning: 212% - Competition among trees for water and light C. Period of increased growth Courtesy of Mathieu Leblanc - Increase in growth after thinning due to the greater amount of water and light available **ACFOR Energy**

Why District Energy?

- 1. Fuel flexible, FUTURE-PROOF infrastructure for cities & towns
- 2. The **PROVEN** approach for urban decarbonization
- 3. Enable the use of low cost, unprocessed LOW CARBON FUELS
- 4. Address URBAN-RURAL divide on decarbonization and job creation
- 5. Development requires same **SKILLS AND TRADES** as oil and gas
- 6. Enables Climate-Smart Forestry, including climate ADAPTATION
- 7. Centralization of energy generation permits **NEGATIVE EMISSIONS** via BECCS
- 8. Source of **INCOME** for municipalities, increasing robustness and resiliency

District Energy Systems

Canada's Missing (Low Carbon) Infrastructure

